Back to Home

AI Image Tag API Documentation - Intelligent Photo Tagging & Classification

Overview

The AI Image Tag API is a powerful AI photo tagging service that automatically generates intelligent tags, titles, and descriptions for images. This AI image tagging API leverages advanced computer vision and machine learning technologies to analyze image content and provide comprehensive metadata generation. Perfect for automatic image tagging, content management, and photo classification workflows.

Application Scenarios

The AI Image Tag API empowers you to efficiently implement AI photo tagging and metadata generation in the following areas:

API Keys

To access the AI Image Tag API, you must first obtain a valid API key. This key is used to authenticate your requests and ensure secure access to the API.

Obtaining an API Key

  1. Access the API Keys Management Page: Log in to the system, then click your user avatar in the top-right corner. In the dropdown menu, click "Apply for API" to open the API Keys Management Page.
API for AI Image Tag
  1. Create a New Key: Click "Create New Key", enter a name for your key in the pop-up dialog, and then click "Create".
API Keys for AI Photo Tag
  1. Copy and Store Your Key: Note that the key will only be displayed in full once. Click the copy icon to copy the key to your clipboard, and then click "Confirm" to close the dialog.

Important: Do not share it with others or expose it in the browser, client-side code, or any other insecure location. Keep your key safe to prevent unauthorized access.

API Endpoint

POST https://api.imagedescriber.app/api/v1/generate_tags

Request Parameters

Request Headers

HeaderTypeRequiredDescription
content-typestringYes`application/json`
authorizationstringYes`Bearer ${api_key}`, where `${api_key}` is your API key.

Request Body

The AI image tagging API accepts the following request structure:

{
  "image": "data:image/jpeg;base64,{image_base64_data}",
  "lang": "en"
}
ParameterTypeRequiredDescription
imagestringYes

The Base64 encoded data of the image. Supported image formats are listed in Image Format Details.

langstringNoThe language code for the returned tags and descriptions. Defaults to `en` (English). Supported language codes are listed below.

Supported Languages

CodeLanguage
enEnglish (Default)
zhChinese
frFrench
deGerman
esSpanish
jaJapanese
koKorean

Request Example (cURL)

curl --location 'https://api.imagedescriber.app/api/v1/generate_tags' \
--header 'content-type: application/json' \
--header 'authorization: Bearer your_api_key' \
--data '{
    "image":"...", 
    "lang":"en"
}'

Request Example (Python)

import requests
import base64

def image_to_base64(image_path):
    """Convert image to Base64 encoding"""
    with open(image_path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read()).decode("utf-8")
    return encoded_string

def generate_image_tags(api_key, image_path, lang="en"):
    """Generate AI image tags using the AI Image Tag API"""
    url = "https://api.imagedescriber.app/api/v1/generate_tags"
    headers = {
        "content-type": "application/json",
        "authorization": f"Bearer {api_key}"
    }
    
    image_base64_data = image_to_base64(image_path)
    payload = {
        "image": f"data:image/jpeg;base64,{image_base64_data}",
        "lang": lang
    }

    response = requests.post(url, headers=headers, json=payload)

    if response.status_code == 200:
        result = response.json()
        tags_data = result["data"]["tags"]
        print("Generated Tags:", tags_data["tags"])
        print("Title:", tags_data["title"])
        print("Description:", tags_data["description"])
        print("Credits Remaining:", result["data"]["credits"]["remaining"])
    else:
        print(f"Error: {response.status_code}")
        print(response.text)

# Example usage
api_key = "your_api_key"
image_path = "your_image.jpg"

generate_image_tags(api_key, image_path)

Request Example (Next.js)

import fs from 'fs';

// Server-side implementation
const buffer = await fs.readFileSync("/temp/test.jpg");
const base64Image = buffer.toString('base64');
const imageData = `data:image/jpeg;base64,${base64Image}`;

// Client-side implementation
const file: File = /* file from input or drop event */;
const arrayBuffer = await file.arrayBuffer();
const bytes = new Uint8Array(arrayBuffer);
const base64Image = btoa(String.fromCharCode.apply(null, bytes as any));
const imageData = `data:${file.type};base64,${base64Image}`;

const body = {
  "image": imageData,
  "lang": "en"
};

const response = await fetch('https://api.imagedescriber.app/api/v1/generate_tags', {
  method: 'POST',
  headers: {
    'Content-Type': 'application/json',
    'Authorization': 'Bearer {your_api_key}'
  },
  body: JSON.stringify(body),
});

const result = await response.json();
console.log('AI Generated Tags:', result.data.tags.tags);
console.log('Generated Title:', result.data.tags.title);
console.log('Generated Description:', result.data.tags.description);

Response

Response Body (JSON Response)

The AI photo tagging service returns a comprehensive response containing generated tags, title, description, and credit information:

{
  "code": 0,
  "message": "success",
  "request_id": "unique_request_id_string",
  "data": {
    "tags": {
      "tags": [
        "tag1",
        "tag2",
        ...
      ],
      "title": "Concise and engaging image title",
      "description": "Detailed image description"
    },
    "credits": {
      "amount": "credits consumed by this call",
      "remaining": "total credits remaining after this call"
    }
  }
}
FieldTypeDescription
codenumberStatus code, `0` indicates success, non-`0` indicates an error.
messagestringStatus message, describes the status of the request.
request_idstringUnique request ID, used for tracking and troubleshooting.
dataobjectContains the generated tags data and credit information.
tagsobject

Contains the AI-generated image tags, title, and description.

tags.tagsarray

Array of AI photo tags generated for the image.

tags.titlestringAI-generated title that summarizes the image content.
tags.descriptionstringDetailed description of the image content and context.
creditsobjectInformation about credit consumption and remaining balance.
credits.amountnumberNumber of credits consumed by this API call.
credits.remainingnumberTotal credits remaining in your account after this call.

Request Limits

To ensure service stability and fairness, each API key is limited to 30 requests per minute (1800 requests per hour). Requests exceeding this limit will be rejected with error code 1004.

Credit System

How to Get More Credits?

You can visit the Credit Recharge Page to purchase credit packages to support more AI photo tagging API calls. We offer various packages to meet the needs of different users.

Error Handling

The following table lists common error codes, their meanings, and solutions:

Error CodeDescriptionSolution
1002UnauthorizedPlease verify that your `authorization` header is set correctly.
1003Invalid API KeyPlease verify that your API key is correct or obtain a new one.
1004Too Many RequestsPlease reduce your request frequency, maximum 30 requests per minute.
1005Invalid ParametersPlease verify that your request parameters conform to the specifications.
2002Insufficient Credits
2003Content Blocked by FilterPlease modify your image to ensure the content complies with regulations.
2004Invalid Image Format

Please use a supported image format, refer to Image Format Details.

2005Image Upload FailedPlease verify that your image data is valid or try uploading again later.
5050Internal Server ErrorPlease contact our technical support team and provide the `request_id`.

Image Format Details

Currently supported image formats include: JPG, JPEG, PNG, WebP. The maximum image size is 4MB.

Best Practices for AI Image Tagging

  • High Resolution: Use clear, high-resolution images for better AI photo tag accuracy.
  • Good Lighting: Well-lit images produce more accurate tags and descriptions.
  • Clear Subject: Images with distinct subjects and objects generate more relevant tags.
  • Supported Formats: Stick to supported formats (JPG, PNG, WebP) for optimal results.

Use Cases and Integration Examples

SEO Enhancement

Use the AI image tagging API to automatically generate alt text and meta descriptions for your website images:

// Enhance image SEO with AI-generated tags
const enhanceImageSEO = async (imageElement, apiKey) => {
  const canvas = document.createElement('canvas');
  const ctx = canvas.getContext('2d');
  canvas.width = imageElement.width;
  canvas.height = imageElement.height;
  ctx.drawImage(imageElement, 0, 0);
  
  const base64Image = canvas.toDataURL('image/jpeg');
  
  const response = await fetch('/api/v1/generate_tags', {
    method: 'POST',
    headers: {
      'Content-Type': 'application/json',
      'Authorization': `Bearer ${apiKey}`
    },
    body: JSON.stringify({ image: base64Image })
  });
  
  const result = await response.json();
  const { tags, title, description } = result.data.tags;
  
  // Update image attributes for SEO
  imageElement.alt = description;
  imageElement.title = title;
  imageElement.setAttribute('data-tags', tags.join(', '));
};

Content Management Integration

Integrate AI photo tagging into your CMS workflow:

# Bulk process images in a content management system
import os
import requests
from pathlib import Path

def bulk_tag_images(directory_path, api_key):
    """Process all images in a directory with AI tagging"""
    image_extensions = ['.jpg', '.jpeg', '.png', '.webp']
    
    for image_path in Path(directory_path).iterdir():
        if image_path.suffix.lower() in image_extensions:
            try:
                # Generate tags for each image
                result = generate_image_tags(api_key, str(image_path))
                
                # Save metadata to accompanying file
                metadata_path = image_path.with_suffix('.json')
                with open(metadata_path, 'w') as f:
                    json.dump(result['data']['tags'], f, indent=2)
                    
                print(f"Processed: {image_path.name}")
                
            except Exception as e:
                print(f"Error processing {image_path.name}: {e}")

# Usage
bulk_tag_images("/path/to/images", "your_api_key")

Contact Us

If you have any questions or suggestions about our AI Image Tag API or photo tagging service, please feel free to contact us through the following methods:

Start using the AI Image Tag API now and unlock the power of intelligent photo classification and automatic image tagging!